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Introduction

The evolution of high-speed computers and so-
phisticated display devices has encouraged the devel-
opment of advanced algorithms for manipulating and
displaying multidimensional data. In particular, the
area of computer-aided geometric modeling (CAGM)
has advanced significantly in recent years. In CAGM,
computational geometry and computer graphics are
combined to give mathematical and graphical repre-
sentations of curves, surfaces, and volumes. A wide
variety of applications may be found in the mathe-
matical representation of physical phenomena, such
as meteorological data, and in the design of aircratft.

Often it is desirable to smooth three-dimensional
surface data consisting of two independent variables
(z and y) and one dependent variable which contains
random noise because of errors in measurement or
calibration. The purpose of smoothing the surface is
to obtain statistically representative values of the de-
pendent variable. One typical approach to smoothing
surfaces with splines is to first smooth along rows of
data and then smooth along columns of data (ref. 1).
If, however, the data are not aligned in rows and
columns, then additional procedures must be applied,
such as the use of a triangularization method to in-
terpolate to a rectangular grid before smoothing. A
difficulty that can arise with either method is that
changes in trends in the data can induce undesirable
oscillations in the smoothed spline surface.

One way to reduce or eliminate the oscillations in
the spline surface is to apply tension to the surface.
Applying mathematical tension to a spline surface
is analogous to grasping the opposite edges of a
membrane and stretching the membrane to remove
wrinkles. In reference 2, Spath developed the rational
spline for both curve and surface interpolation. The
rational spline is a cubic function which has tension
parameters in the denominators of the cubic terms.
More recently, Frost and Kinzel (ref. 3) developed
an algorithm for automatically adjusting the tension
parameters in curve-interpolating rational splines.
The Frost and Kinzel method was combined with
constrained least squares by Schiess and Kerr (ref. 4)
to give an algorithm for rational-spline smoothing
of curves. Finally, Schiess (ref. 5) developed two
algorithms for rational-spline interpolation of surface
data given on a rectangular grid.

The present paper presents an algorithm for
smoothing surface data with bivariate rational
splines having multiple tension parameters. The
multiple tension parameters allow for local con-
trol of tension on the smoothing surface. Equa-
tions are derived to ensure continuity of the deriva-
tives at the knots. Smoothing is accomplished by

finding the weighted least-squares estimates of the
bivariate rational-spline coefficients. The capabili-
ties of the rational-spline smoothing algorithm are
demonstrated on terrain elevation data.

Symbols

A 4 by 4 matrix of coeflicients

a5kl coefficients of multivariate rational
spline in the subregion R;; (k,! =
1,2,3,4)

CX; coefficients in equation for F'X;;

CY; coefficients in equation for FY;;

Cik coefficients in univariate rational
spline on interval 7 (k = 1,2, 3,4)

D 2MN by 4 MN matrix of constraint
cofactors

dzx; difference between consecutive values

of z-coordinate of knot, z;41 — Z;

dy; difference between consecutive values
of y-coordinate of knot, y;41 — ¥,

E m by 4MN matrix of rational-spline
cofactors

F, function value at the data point
(1‘7" yr)

Fi; function value at (Z;, 7;)

FX;; partial derivative of f;;(z,y) with
respect to z evaluated at (Z;, ;)
FY;; partial derivative of f;;(z,y) with
respect to y evaluated at (Z;, ;)
;j  partial derivative of f;;(z,y) with
respect to z and y evaluated at (Z;, ;)

fij(z,y) rational spline on the subregion R;;

G; 4 by 4 matrix of functions g;;{x)

gire () functions of z used in rational-spline
representation on interval ¢ (k =
1,2,3,4)

H; 4 by 4 matrix of functions hj(y)

hji(y) functions of y used in rational-spline
representation on interval j (I =
1,2,3,4)

L 2 MN-element column vector of
Lagrange multipliers

M number of knots along z-axis



m number of data points

N number of knots along y-axis

P tension factor for interval ¢

q; tension factor for interval j

R;; rectangular subregion in zyplane
defined by z; < =z < I,;4; and
Y <Y<Y

S;; 4 by 4 matrix of function and deriva-
tive values

8ij 16-element column vector of unknowns

r,s,t,u  variables used to define rational spline

v,(z) 4-element column vector of functions
of z

VW 16-element vector of functions of z and
)

|4 estimated variance of measurement
error

A% m by m diagonal weighting matrix

w;(y) 4-element column vector of functions
of y

z,y independent variables

Z m-element column vector of function
values Fp

Z 4 M N-element column vector of un-

known parameters

z dependent variable in univariate
rational spline

Az, A differences with respect to z and y
Yy

variables
Subscripts:
1,7 quantity at the knot (z;,7;)
k,l general indices
T data point index
Superscripts:
T matrix transpose
-1 matrix inverse

A prime indicates first derivative with respect to
the independent variable. A double prime indicates
second derivative with respect to the independent
variable. A bar over a quantity denotes that quantity
at a knot.
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Problem Statement

Let the three-dimensional data (z,, yr, Fr) be
given, where r = 1,2,...,m. The variables z and
y are the independent variables. The paired val-
ues (zr, yr) lie in a finite, bounded region of the
zy-plane but do not need to be uniformly scattered
in the region or lying on grid lines. The values F, of
the dependent variable represent values of a function
measured at the points (z,, y.); the measured val-
ues are assumed to be corrupted by random error of
unknown statistical characteristics.

The objective is to fit, in the weighted least-
squares sense, a bivariate rational spline to the data.
This requires the selection of M knot locations along
the z-axis and N knot locations along the y-axis so
that T1 < To < ... < Tprand §; < J2 < ... < Yn-
The knot locations need not be equally spaced. All
the data must lie in the region defined by {z; <z <
Iy, Y1 <y < YN}, and several data points should
lie in each subregion R;; = {71 < z < 744, ¥j <
Y < Y41}

Rational Splines

In this section both the univariate and bivariate
rational splines are described. Because the bivariate
rational spline is the tensor product of two univariate
rational splines, the characteristics of the univariate
rational spline are discussed first.

Univariate Rational Spline

Let z; be the abscissas of the knots of the uni-
variate rational spline, where ¢ = 1,2,.... M and
Ty < 29 < ... < Zpq, and let 2z be the value of
the spline at z. The rational spline on interval
7 (1 =1,2,..., M — 1) is defined in references 2 and 3
to be

4
2= i gikla) (Zi<z<zyy) (D)
k=1

where ¢;;. are unknown coefficients,

u3
() =u 3(z) =
gi1(z) 9i3(2) i 1
t3
olx) =1t qlx) =
gia( ) gia( ) pru+ 1
where B
_ .’Ei_{_l—z
dCEl'




t:x—xizl—u

d.’l;i

dr; = Tjp1 — T

and p; is the tension parameter for interval s.

Equation (1) is defined for all values of the inde-
pendent variable z in the data range if the tension
parameter p; is restricted to p; > —1. If p; is set to
zero, equation (1) reduces to a cubic-spline function.
As p; increases from zero, the cubic terms decrease
in magnitude and the function tends to the equation
of the line joining the knots at Z; and z;, . Because
a distinct, independent tension parameter is associ-
ated with each interval, the behavior of the function
in each interval may be locally controlled.

Evaluation of equation (1) for each subinterval re-
quires knowledge of the four coeflicients ¢;1, ¢;9, ¢;3,
and c¢yy. Thus, for M data points (equivalently, for
M — 1 subintervals), 4M — 4 coefficients must be de-
termined. Spath (ref. 2) reduces the magnitude of
this problem by writing the coefficients in terms of
the values of the function and its first derivative at
the knots. End conditions are applied to the first
derivative, and equations ensuring the continuity of
the second derivative at the interior knots are de-
rived. For the interpolation problem, this derivation
yields a system of M — 2 equations for the M — 2
unknown interior first derivatives. Frost and Kinzel
(ref. 3) extend Spéth’s approach by allowing for three
different end conditions and by developing an itera-
tive method for determining the tension parameters.
Tension parameters are found so that the interpo-
lating rational spline deviates from the line joining
knots by a prescribed value.

Another approach to determining a smooth fit
to the data has been presented by Schiess and Kerr
(ref. 4) in deriving a least-squares univariate rational-
spline approximation. The rational spline is reformu-
lated in terms of the unknown spline function and
its second derivative at the knots. Smoothness is
ensured by imposing the constraints that the first
derivatives are continuous at the interior knots. This
approach leads to a constrained least-squares prob-
lem in the 2M values of the unknown function and
its second derivative at the knots.

Bivariate Rational Spline

Let a given set of M by N knot points in three
dimensions be represented by (z;, ¥, Fij), where
t=1,2,..,M and 7 = 1,2,..., N. The independent
variables are assumed to be ordered (Z; < Z2 < ... <
zpr and g1 < 2 < ... < gy ) and form a rectangular
grid, but are not necessarily equally spaced.

The multiple-tension-parameter bivariate rational
spline on the subregion R;; defined by z; < z <
ii—i—l (7’ = 1721"'aM - 1) and yj < y < ?—/]'—{-1 (.7 =
1,2,...,N — 1) is defined in reference 2 by

4 4
fii@w) =D aym 9ik(@) hily)  (2)
k=11=1

where g¢;1.(2) and p; are the same as for the univariate
spline, a;;g; are unknown coefficients,

3
5
h = h; =
]I(y) $ 33(?/) g+ 1
,,.3
h. = h.: =
JZ(y) r _]4(y) g;8 +1
where
s Jr1 7Y
dyj
r= y_Yi =1-s
dy;

dyj = @j+l - yj

and g; is the tension parameter for interval j.

As defined by equation (2), the bivariate rational
spline on each subregion R, is a function of 2 tension
parameters (p; and g;) and 16 coefficients (a;;x;)-
The coefficients are to be determined so that the
rational spline and its first and second derivatives are
continuous over the entire region. The M + N — 2
tension parameters may be adjusted individually;
each parameter affects the behavior of the rational
spline in a strip parallel to either the z-axis (for g;)
or the y-axis (for p;).

Since 16 coeflicients are needed on each subregion,
a total of 16 (M — 1)(N — 1) coefficients must be
determined to define the entire rational spline. For
example, for a 30 by 30 grid (M = N = 30}, a total of
13456 coefficients are needed. Spéath (ref. 2) reduces
the actual number of unknown quantities by writing
the coefficients as linear combinations of the values
of the function and its derivatives at the grid points.
A similar approach is taken in this paper.

Let Wij and Wij be the first derivatives of
fij(z,y) with respect to z and y, respectively, and

F XY ;; be the cross derivatives, all evaluated at the

3




point (Z;,y;). For the subregion R;;, define the 4 by
4 matrices

F; FY; Fig+n FY.G+1)
FXij FXY i FXi(+1) FXYiGi+1)
S“j = _ _
Fusn;  FYaays Farogry FYaing+n
FXry; FXYry; FXarnu+y FXY GG+
a1t %4512 Q4513 Q4514
Q521 Q4522 Q4523 O4524
A=
Q4531 G532 Q4533 Q4534
Q541 Q4542 Qij43 Q4544
[ 9:1(2;) 9:2(%;) 9:3(%;) 9i4(Z;)
gl () g, (%) glg(E) gi4(E)
G, =
9:1(Zip1)  gi2(Ziq1) 9i3(Zit1) 9ia(Zigy)
Lol (Zit1) 9ia(Eir1) 9i3(Eiv1) 9(4(Fit1)
! 0 1 0
1 1 3+ p;
@ T TTEE s °
0 1 0 1
1 1 3+ p;
I @m0 o
I k() hja(¥;) h;3(75) hja(7;)

hi1(@ie1)  hj2@i41) hy3(@i4+1) hja(¥541)

Lh;'l(yjﬂ) h;'z(gjﬂ) h93(§j+1) h;'4(37]‘+1)

r 1 0 1 0
_ 1 1. _3+4g
@ w w0
0 1 0 1
1 1 3+ q;

Thus, in matrix notation,
S;; = G;A;, HT (3)
1] gty

Equation (3) can be verified by differentiating equa-
tion (2), as appropriate, and evaluating the results at
the corners of the subregion. Note that G; and H;
depend on the grid spacing and tension parameters
but not on the function values.
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Since the matrices G, and H; are nonsingu-
lar, equation (3) can be solved for the matrix of
coeflicients:

A;=G s )™ (4)

Therefore, for any subregion the 16 coefficients can
be determined from the values of the function, its
first derivatives with respect to z and y, and its
cross derivatives at the four corners of the subregion.
Therefore, a total of 4MN function and derivative
values are needed to calculate the coefficients.

Rational-Spline Smoothing

In this section an algorithm for finding the
surface-smoothing rational spline in terms of the
function and its derivatives is presented. This algo-
rithm is for the general case of M —1 values of the ten-
sion parameters p; (i = 1,2,..., M —1) and N —1 val-
ues of the tension parameters ¢; ( = 1,2,..., N - 1).
An algorithm for the single-tension-parameter ra-
tional spline is not presented because that rational
spline is a special case of the multiple-parameter
spline.

Vector Formulation

Let the knot locations (Z;, g;) and tension param-
eters p; and ¢; (for ¢ = 1,2,..,M and j = 1,2,..., N)
be given. The knots do not need to be equally spaced,
but they must form a rectangular grid. Let the data
(zr, yr, Fy) for r = 1,2,...,m also be given. Least-
squares estimation of the 4 MN unknown function and
derivative values requires that there be more data
points than unknowns, or that m > 4M N. Further,
there should be several data points in each region
Rij-

In order to find least-squares estimates of ?ij,
_F_Xi]-, Wij, and F XY ;;, it is necessary to reformu-
late the problem. Using equation (4) in equation (2)
results in the rational spline being written as

fii(z,y) = vI(z) Siw;(y) (5)

where

vi(z) = (G7HT [g:i1(2), gia(2), gi3(2), gm(x)lT(e))

and

wi(y) = (H YT [hj1(y), h2(v), hjs(), ha(y)]"
(7)
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In terms of individual entries in v;(z), w;(y), and

S;;, equation (5) can be written as
4 4
Fii@y) =Y vik(@) Sijr wji(y)
k=1i=1
4 4
=YY vie(@) wiy) Sy (8)
k=11=1
or

fii(z,y) = (vwi)T sy

with the two 16-element column vectors defined by
vwy; = [ (z)w;(y), vii(T)wya(y), v (x)

w;3(y), - via(@)wya(W)T

and

_ .. . .. . T
;7 = [Sij11> Sij12s Sij13s Sij14s Sij21s - Sijadl

As presented in equation (8), f;;(z,y) is a linear func-
tion of the vector s;; of unknown function and deriva-
tive values at the knots and therefore is amenable to
least-squares estimation.

One minor modification which is made to simplify
the use of this formulation is to rearrange the entries
in s;; (and corresponding entries in vw;;) so that
all the unknowns corresponding to one knot are in
consecutive entries. The rearrangement is chosen so

F:, FX;;, FY;

that the entries are in the order F
and FXYZ]

YR YK 79

Constraint Equations

In the formulation used herein, the continuity of
the first derivatives and cross derivatives at the in-
terior knots is ensured because these derivatives are
parameters to be estimated in the rational-spline for-
mulation. It is also desirable that the second deriva-
tives be continuous at the interior knots. Further-
more, for the knots on the boundaries, natural spline
conditions can be applied (i.e., the second derivatives
are zero on the boundary). Both of these conditions
can be added to the least-squares formulation as con-
straint equations which are linear in the unknown
quantities.

For the continuity of the second derivatives at the
interior knots, the equations derived in reference 5
are used. Equations (9) and (10) of this report are
the same as equations (5) and (6) in reference 5

(with the current notation and some rearrangement).
Constraining the second derivatives with respect to
Z to be continuous at the interior knots results in the
(M — 2)N equations

CX;—1 FX(j_1); + [(2+pi_1)CX; 4

+ (2+p)CX;) FX5 + COX; FX(i1y);

3+pi-1 =
Ty, X1 BeF-ny
3+p; =
——(Ei—’CXi AF; =0
¢ =23.,M~-1j = 12,.,N) (9)
where
2
“+3p; +3
CX; = p; +3p; +

(2 + p;)? — 1]dz;
ArFij = Fyny — Fy

Similarly, continuity of the second derivative with
respect to y at the interior knots yields the additional
M(N — 2) equations

CY;o1 FY 5_qy + [(2 + ¢j-1)CY;

+ (2 + ¢)CYj|FY 5 + CY;FY 4

_3+4gj-1
dyj-1
3+¢q

loY; AF;: =0
dyj J Yyt

CYj1 DyFy(joy)

(i=1,2,..,M; j=2,3,.,N—1) (10)

where

oY = qJQ- + 3¢; + 3
T2+ ¢)? - 1)dy;

ByFij = Figyr) — Fij

The natural spline boundary conditions require
that the second derivatives with respect to z be zero
at the boundaries, conditions which are equivalent to
requiring the rational spline be linear on and outside
the boundaries. These conditions result in two sets
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of constraint equations. Along the boundary = = Iy,
the equations are

3 + M+ 3 + p1+ R
Fy, - Fy,; 2 + FXy,
dr, 13 dr, 25 T ( p1) 17
+ FX9;=0 (j=12,..,N) (11)

Along the boundary z = Z)y, the equations are

S M oy -

+ W(M—l)j + (2 +PM_1) F_XM]‘ =0
(j=1,2,..,N) (12)

On the boundaries y = §; and y = yx, the second
derivative with respect to y is zero. These conditions
lead to two additional sets of constraint equations.
For the boundary y = 7, equation (13) applies:

3+q1F 34+ q1
d Ty
Y1 Y1

+ FY;2 =0 (t=1,2,..,M) (13)

Fio+(2+q)FY

Along the boundary y = y, the constraint equations
are

3+ av—15 3+ gN-—15 —
ST AN o 2T ANSLE L FY N
dym s L1 = g —Fiv i(N~-1)

+ 2+qv-1) FYin=0 (=12,.,M) (14)

The (M — 2)N + M(N — 2) constraints at the
interior knots and 2M + 2N boundary constraints
yleld a total of 2MN constraint equations. The
derivation of the constraint equations resulting from
the boundary conditions is given in the appendix.
In the next section these equations are incorporated
into the least-squares fit of the rational spline to the
data.

Constrained Weighted Least Squares

The rational-spline surface approximation is
found through solution of a constrained weighted
least-squares problem. The solution to this prob-
lem is most easily seen with the following matrices
defined. Let Z be the 4 MN-element column vector
of unknowns such that Z = (Fi1, FX11, FY 11,
FXY |y, Fo1, FXo1,.. FXY yn)T. Let Z be
the m by 1 vector of known function values F;
at the data points (z, %) (r = 1,2,...,m) such
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that Z = (Fy, Fp, .., Fn)T. Define the m by
4MN matrix E of cofactors Fz-j, F_X_z-j, sz, and
FXY; (1=12,..,Mand j = 1,2,...,N) as given
in equation (8). From the definition of Z, the quadru-
plets (fij, Wz-j, Wij, FXY ;) are ordered so that
the subscript ¢ changes faster than the subscript j.
Equivalently, the values in Z are ordered so that all
the values in region R;; are first, those in region Ro;
are second, and so forth; the ordering within regions
is unimportant. With this ordering, E has the gen-
eral block structure

O

where only the entries in blocks are nonzeroes. Each
block is eight columns wide. With these defini-
tions, equation (8) evaluated at (z,, yr, Fr) (r =
1,2, ...,m) can be written

Z=EZ (15)

Let D be the 2MN by 4 MN matrix of cofactors of
the constraint equations (eqs. (9) to (14)). Thus, the
constraint equations can be written in matrix form
as

DZ =0 (16)

Each row of D has only four (corresponding to
egs. (11) to (14)) or six (egs. (9) and (10)) nonzero
entries.

Finally, let W be an m by m diagonal weight-
ing matrix containing the weights on the diagonal.
Then, the constrained weighted least-squares prob-
lem requires minimization of (Z — EZ)T W(Z — EZ)
with respect to Z such that DZ = 0. With L defined
as a 2MN-element column vector of Lagrange multi-
pliers, the constrained problem can be rewritten as
the unconstrained problem, that is, minimization of
(Z—EZ)TW(Z—-EZ) + 2LTDZ with respect to Z
and L. The solutions of this minimization problem
(ref. 6) are

Z=(ETWE)"' E"WzZ - (ETWE)"! DL (17)
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and

L = [D(ETWE)"'DT|-! D[ETWE) ! ETWZ

(18)
The solutions in equations (17) and (18) exist and
are unique if the matrix inverses in the equations
exist. Furthermore, a sufficient condition such that
the solutions in these two equations yield a unique
global minimum of (Z — EZ)T W(Z — EZ) subject
to the constraint DZ = 0 is ZTETWEZ > 0 for all
Z > 0 with DZ = 0 (ref. 6).

For the user interested in an overall measure of the
error of the fit to the data, the estimated variance
of the measurement error is easily calculated. The
estimated variance V is defined by (ref. 6)

1 — _
V= (Z- EZ)T W(Z -EZ) (19)

Selection of Tension Parameters

Although an automated procedure for adjusting
tension parameters is available for univariate rational
splines (refs. 3 and 4), no such procedure has been
devised for bivariate rational splines. Instead, it is
recommended that the user visually examine three-
dimensional or contour plots of the data and the
rational-spline smoothed surface and then use engi-
neering judgment to select tension-parameter values.
This approach is outlined here.

First, the user should obtain a plot of the orig-
inal data. This plot will show both general trends
and local anomalies of the data. Second, the user
should compute the smoothing bicubic-spline surface
by calculating the smoothing rational spline with all
the tension parameters set to zero. Comparison of
the data and the bicubic-spline plots will indicate re-
gions where the cubic spline exhibits undesirable or
exaggerated hills and valleys. Using small to mod-
erate tension-parameter values (say, from 1 to 10)
for those regions, the user can recalculate a smooth
rational spline. In this way, after a few trials with
different tension values, a rational-spline surface can
be obtained which the user considers representative
of the data.

Implementation Considerations

In implementing the rational-spline surface
smoother, the number and locations of the knots need
to be considered. For the given m data points, the
number of knots chosen (M and N) is restricted by
the relationship :

AMN <m (20)

since there arc 4MN unknowns. The knot locations
need to be selected so that all the data lie within
the region {Z1 < ¢ < Tm, 91 < y < Yy} or
on the boundaries. A few data points must lie in
each subregion R;;. Since there are (M — 1)(N — 1)
subregions, dividing each side of equation (20) by
(M — 1)(N — 1) indicates that there must be more
than 4MN/(M — 1)(N — 1) data points either in each
subregion or on the boundaries of the subregion.
Note that points on a boundary between two subre-
gions count towards the total number of data points
for each of the two subregions. In the terrain eleva-
tion example given later, m = 121 and M = N = 5.
Thus, equation (20) becomes 100 < 121 and there
must be more than (4)(5)(5)/(4)(4) = 6.25 data
points per subregion; that is, each subregion must
contain at least 7 data points. As constructed, there
are 9 data points within or on the boundaries of each
subregion.

The two matrices to be inverted in the solution
of equations (17) and (18) can be large—ET WE is
4MN by 4MN and D(ETWE)~!D7 is 2MN by 2MN.
For example, for M = N = 5 these matrices are 100
by 100 and 50 by 50, respectively. Calculation of
such large inverses with a general matrix inversion
method, such as that of Gauss-Jordan, may lead
to loss of precision. However, both matrices are
symmetric and positive definite. Therefore it is
highly recommended that a Cholesky method (ref. 7)
be used since it takes advantage of the characteristics
of the matrices.

Example

The data chosen to illustrate the rational-spline
surface smoother consist of terrain elevation mea-
surements on a square area 1000 ft on each side.
The measurements were taken at 100-ft intervals in
both the z and the y-direction. This yields a total
of m = 121 measurements. Elevations are measured
to an accuracy of 0.1 ft.

Figure 1 shows a surface plot of the terrain
elevation data. The elevations range from 12.0 ft
(at z = 300 ft, y = 300 ft) to 31.0 ft (at z = 700 ft,
y = 500 ft). As shown in figure 1, the original data
are relatively smooth. For the purposes of this ex-
ample, the original elevation measurements are per-
turbed by addition of normally distributed error hav-
ing a mean of zero and a standard deviation of 1 ft. A
surface plot of the resulting measurements is shown
in figure 2. It is to these measurements that the sur-
face smoother is applied.

Knots are chosen to be located at the points
0 ft, 250 ft, 500 ft, 750 ft, and 1000 ft along each
axis; this choice gives a 5 by 5 (N = M = 5) grid of
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knot locations. As a result, 4M N = 100 unknown
function and derivative values must be estimated.
In the case of zero-tension values (p; = 0 for ¢ =
1,2,3,4 and g; = 0 for j = 1,2, 3,4), the bivariate
rational-spline smoother reduces to a bicubic-spline
smoother. Figure 3 shows a surface plot of the
bicubic-spline smoothed values of the measurements
including error. The values plotted in this figure are
generated through evaluation of the bicubic spline
at 50-ft intervals along each axis in order to show
the behavior of the surface at intermediate points.
Although the bicubic-spline surface is smooth, it
contains oscillations which are not present in the
original data. Tt is these artificial oscillations which
can be removed or reduced by application of tension.

Figure 4 shows the rational-spline surface when all
8 tension parameters have a value of 10. Comparison
with figure 3 shows that the nonzero tension gives
the surface a less “rounded” appearance because the
magnitude of the cubic terms is smaller when the
tension has a value of 10 than when it has a value of
0. This tendency for the rational spline to be more
linear for a tension value of 10 is clearly shown along
the y = 0 edge for large z. This edge in figure 4
also has shallower undulations than the same edge in
figure 3. This reduction in undulations is the purpose
for applying tension.

As an example of the application of tension to
subregions of a surface, only the tension parameters
ps and g4 are set to a value of 10 and all the others are
set to 0. Figure 5 shows the surface resulting from
these tension parameters. Comparison of figure 5
with figures 3 and 4 shows that the surface for the two
regions (750 ft < z < 1000 ft, 0 ft < y < 1000 ft) and
(0 ft < z < 1000 ft, 750 ft <y < 1000 ft) in figure 5
closely resembles the surface for the same regions in
figure 4. In contrast the remaining surface of figure 5
more closely resembles the corresponding surface in
figure 3. Hence, the surface can be smoothed with

rational splines in which the tension selectively varies
from region to region.

Concluding Remarks

An algorithm for surface smoothing with bivari-
ate rational-spline functions on a rectangular grid has
been presented. The rational-spline function com-
bines the advantages of a cubic function having con-
tinuous first and second derivatives over the entire
grid with the advantage of a function having vari-
able tension. Adjustment of the tension parameters
in the rational spline allows the user to reduce un-
wanted oscillations to any desired level across the sur-
face. The multiple parameters of the rational spline
provide adjustable parameters for each rectangular
subregion and thus give the user control over local
behavior of the surface.

The terrain elevation example presented illus-
trates the reduction in undesirable oscillations that
is possible with a bivariate rational spline which
smooths the measurements. The example also illus-
trates that the bivariate rational spline provides the
capability of controlling local oscillations in the sur-
face caused by trend variations in the data.

There is one major disadvantage to using the
bivariate rational spline. Several computer runs with
different tension values may be necessary to find
a smoothing surface satisfactory to the user. It
is recommended that for the initial run the user
apply zero tension in order to ascertain regions of
excessive oscillations. The user can then determine
appropriate tension values by examining the surface
plots from a few additional computer runs.

NASA Langley Research Center
Hampton, VA 23665-5225
March 30, 1987
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Appendix

Derivation of Boundary Constraints

In this appendix equations (11) to (14), which
express the constraints along the boundaries, are
derived. The derivations of all four sets of equations
are similar. A detailed derivation of equation (11) is
given.

With the definition of the rational spline in equa-
tion (2), consider the interval z; < z < Z;4, fix
J, and evaluate f;;(z,y) at g;. Thus, h;((y;) =
hi3(¥;) = 1, hja(g;) = hj4(717j) = 0, and

4
fz] xr yg Z gik(x azjlcl + aijlc3) (A1)

For simplicity, define b;;p = a;jk1 + ai;%3- Then,
from equation (A1) and the definitions of g;;(z),

fii (3, 95) = bij1 + bz =
Jij(Zit1,95) = bija + bije =

=l

Y } (A2)
(i+1)5

where fij and F(l +1); are unknown function values
at the grid points.
The first derivatives of g;;(z) are

1 ~3ul(p;t + 1) — u®p,

! ! 1 7
) = ——=— z) =

911 () dz; 9:3() dz;(p;t + 1)?

i) = o i(z) = 3t2(p;u + 1) + t3p;

2 dz; “ dz;(piu + 1)2

(A3)

Differentiating equation (A1) with respect to z, ap-
plying equations (A3), and evaluating at Z; and Z;44
yields

3fz bij1 bz 3+ p; R
%,95) = ~ + - Sl Py = FX
( 95) dz; dz; dz; 73 *
afij bij1 bi;2 3 + p;
, - _ 2 T Py
oz (zH'l y]) dzq + dz; dz; 74
= FX(11);

(Ad4)

where FX;; and FX(; ); are the unknown first
derivatives with respect to z at interior grid points.

The second derivatives of g;,(x) are

i () = oy (z) = 0

6u(p;t + 1)2 + 6ulp;(pt + 1) + 2u3p?

" _
9i3(=) = dz2(p;t + 1)3 (A5)

6t(p;u + 1)% + 6t2p;(pu + 1) + 2t3p?
dz?(p,u +1)3

pa(z) =

Differentiating equation (A1) twice with respect to z,
applying equations (A5), and evaluating the results
at Z; and 7,4 leads to

2fiy . 2 4+ 6p; +6
2.2 Fir¥y) = 7 biss

X (A6)
a2fU( - 2p?+6pi+6u
Y Z;+1.95) = Tlﬂ

Solve equations (A2) for b;;; and b;;o, substitute
into equations (A4), and rearrange the results to
obtain

—(2 + )bz — bija = dziFXy5 + Fij — Figy,

(A7)
bijz + (2 + pi)bija = deiFX (1) + Fij = Fiyyy;
(A8)

Define Azjﬁu = F(H—l)j
tion (A7) for b;;4 to get

— —F,-J- and solve equa-

bija = —(2 + pbijz —

Substituting equation (A9) into equation (A8) and
solving for b;;3 yields

b (B+p)AcFyj — deFX(;41); — (2+p)dz,FX;
3 (2+p)? -1

(A10)
Substituting equation (A10) into equation (A9) gives

—(3 + pi)AzFi]' + (2 + pi)dziﬁ(i-l-l)j + dziﬁij
(2+p)? -1

bjj4 =

(Al1)

9

d:tiﬁij + Az—l‘:ij (Ag)'



In order to derive equation (11), evaluate the first
of equations (A6) at 1 = 1, substitute for b;;3 from
equation (A10), and set the result to zero:

62flj(x11 y_j) -0
dz?

or

2p? + 6p; +6

2
dzl

(3+p1)AzFyy - de1FXg; — @+p)dnFXy]
(2+p1)2 -1

10

Substituting for AxFlj and dividing both sides by
the left factor, which is nonzero, yields

G+rgy B+ )
dxy 17 dz)

;-'_2_7‘ + (2 +Pl)ﬁ1j +ﬁ2j =0
(A12)

Equation (A12) is identical to equation (11) and
holds for 5 = 1,2, ..., N.

For the derivation of equation (12), set to zero
the second derivative with respect to z along the
boundary * = Zjs; and substitute the second of
equations (A6) with ¢ = M — 1 and the definition
of b;j4 in equation (All).

Equations (13) and (14) are derived analogously
by differentiation of equation (2) twice with respect
to ywhen z = Z; for fixed «. The result is evaluated
separately at the boundaries y = gy andy = gy,
and appropriate substitutions are made.
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Figure 1. Terrain elevation data.

Figure 2. Terrain elevation data with random error (standard deviation of 1.0 ft) added.
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Figure 3. Bicubic-spline smoothed terrain elevation surface.

spline smoothed terrain elevation surface for p; = ¢; = 10.

Figure 4. Rational-
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g4 = 10.

Figure 5. Rational-spline smoothed terrain elevation surface for p4
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